

IDENTIFICATION DETAILS

Degree:	Diploma in Quantum Computing (Awarded Degree associated with Mathematical Engineering)			
Faculty/School:	Higher Polytechnic School			
Course:	Introduction to Quantum Mechanics			
Туре:	Compulsory Internal		ECTS credits:	2
Year:	2		Code:	49511
		!		
Teaching period:	Fourth semester			
Teaching type:	Classroom-based			
Language:	English			
Total number of student	50			
Study Hours.]		
Teaching staff		F-mail		
Pablo Fernández Blanco		p.fblanco.r	prof@ufv.es	

SUBJECT DESCRIPTION

This course covers the experimental basis of quantum physics. It introduces wave mechanics, Schrödinger's equation in a single dimension, and Schrödinger's equation in three dimensions.

This will teach you the basic principles of Quantum Mechanics. You will learn theoretical principles and problem solving skills applied to the quantum world of atoms, molecules and photons. The knowledge obtained in this class will serve as a foundation for further advanced classes such as Quantum Chemistry.

The basic concepts of Physics and Mathematics are addressed for understanding quantum mechanics, the experiments that originated it and its main postulates.

PRIOR KNOWLEDGE

Álgebra y Cálculo

COURSE SYLLABUS

- Double slit experiment
- · Black body
- Potential
- Wave function of a particle
- Quantum state
- Observables and eigenvalues
- Representation in the space of states
- Hermitian space
- Potential well
- Wave particle duality
- Planck's constant
- De Broglie wavelength
- Schrödinger equation
- Heisenberg uncertainty principle
- Tunnel effect
- Probability density
- Probability function
- Wave mechanics vs matrix mechanics

Master class and research activities at ho	me.
--	-----

DISTRIBUTION OF WORK TIME

CLASSROOM-BASED ACTIVITY	INDEPENDENT STUDY/OUT-OF-CLASSROOM ACTIVITY
20 hours	30 hours
Clases presenciales en el aula. 20h	Estudio y trabajo personal. 30h

SKILLS

Acquire the basic notions of quantum physics.

SPECIFIC LEARNING RESULTS

Understand the fundamental principles of quantum physics

LEARNING APPRAISAL SYSTEM

There will be a written exam that will account for 75% of the grade and an individual assignment that will account for the other 25%.

BIBLIOGRAPHY AND OTHER RESOURCES

Basic

FEYNMAN, Richard P. Física.III, Mecánica cuántica / México : Addison Wesley, 1998.

Nielsen, Michelle. Quantum Computation and Quantum Information / Cambridge :Cambridge University Press., 2021.

Additional

Peña, Luis de la. Introducción a la mecánica cuántica /

Landau, L. Mecánica cuántica no relativista.vol. III /